Skip to main content

Distributions and Weak Derivatives

Distributions

Let ΩRn\Omega \sub \mathbb{R}^n. The support of a function ϕ:ΩR\phi:\Omega \to \mathbb{R} is the set

supp(ϕ)={xΩ:ϕ(x)0}.\operatorname{supp}(\phi) = \overline{\{x \in \Omega : \phi(x) \neq 0\}}.

Let D(Ω)\mathcal{D}(\Omega) be the set of all functions ϕ:ΩR\phi:\Omega \to \mathbb{R} that satisfy:

  1. ϕC(Ω)\phi \in C^\infty(\Omega),
  2. Compact support: supp(ϕ)\operatorname{supp}(\phi) is compact,
  3. supp(ϕ)Ω.\operatorname{supp}(\phi) \sub \Omega.

A function ϕ\phi with these properties is called a test function.

Definition of Distributions

Let ΩRn\Omega \sub \mathbb{R}^n. A distribution in Ω\Omega is a linear transformation T:D(Ω)RT: \mathcal{D}(\Omega) \to \mathbb{R} such that:

  1. Linearity: For all α,βR\alpha, \beta \in \mathbb{R} and ϕ,ψD(Ω)\phi, \psi \in \mathcal{D}(\Omega),
T(αϕ+βψ)=αT(ϕ)+βT(ψ).T(\alpha \phi + \beta \psi) = \alpha T(\phi) + \beta T(\psi).
  1. Continuity: If ϕkϕ\phi_k \to \phi in D(Ω)\mathcal{D}(\Omega), then
limkT(ϕk)=T(ϕ).\lim_{k \to \infty} T(\phi_k) = T(\phi).

From a functional analysis perspective, the set of distributions in Ω\Omega is exactly the dual of D(Ω)\mathcal{D}(\Omega), that is, D(Ω)\mathcal{D}'(\Omega) This means that a distribution is simply a bounded linear transformation on D(Ω)\mathcal{D}(\Omega).

Locally Integrable Functions

Let ΩRn\Omega \sub \mathbb{R}^n. A function f:ωRf: \omega\to\mathbb{R} is said to be localley integrable on Ω\Omega provided fL1(A)f\in L^1(A) for every open AA such that AΩ\overline{A}\sub\Omega and A\overline{A} is compact. In this case write fLloc1(Ω)f \in L¹_{loc}(\Omega).

Now, every fLloc1(Ω)f \in L^1_{loc}(\Omega) is a disttribution TfD(Ω)T_f\in\mathcal{D}'(\Omega) define by,

Tf(ϕ)=Ωfϕdμ,T_f(\phi)=\int_\Omega f\phi d\mu,

for all ϕD(Ω).\phi\in\mathcal{D}(\Omega). Evidently TfT_f is a linear transformation on D(Ω).\mathcal{D}(\Omega).

Derivatives of Distributions

Let ΩRn\Omega \sub \mathbb{R}^n. Let fC1(Ω)f\in C^1(\Omega) and ϕD(Ω).\phi\in \mathcal{D}(\Omega). We see from the integration by parts in variable xjx_j

Ωfxjϕdμ=Ωfϕxjdμ\int_\Omega \frac{\partial f}{\partial x_j}\phi d\mu = -\int_\Omega f \frac{\partial\phi}{\partial x_j}d\mu

More generally now, if fCα(Ω)f\in C^{|\alpha|}(\Omega), then

ΩDαfϕdμ=1αΩfDαϕdμ.\int_\Omega D^{\alpha}f\phi d\mu = -1^{|\alpha|}\int_\Omega f D^{\alpha}\phi d\mu.

This motivate the following definition of the derivative DαTD^\alpha T of a distribution TD(Ω)T\in\mathcal{D}'(\Omega)

(DαT)(ϕ)=1αT(Dαϕ)(D^\alpha T)(\phi)=-1^{|\alpha|}T(D^\alpha\phi)

Weak Derivative

Let fLloc1(Ω)f \in L^1_{loc}(\Omega). We say that gαLloc1g_\alpha\in L^1_{loc} is the weak derivative of ff, and is denoted by Dαf.D^\alpha f.

Thus Dαf=gαD^\alpha f=g_\alpha in the weak sense provided,

ΩfDαϕdμ=1αΩgαϕdμ.\int_\Omega fD^{\alpha}\phi d\mu = -1^{|\alpha|}\int_\Omega g_\alpha\phi d\mu.

for all test functions ϕD(Ω).\phi\in\mathcal{D}(\Omega).